

Computer fundamentals Computer fundamentals

# Number System

# Number System

Computer fundamentals Computer fundamentals

**Non-positional Number Systems**

**Positional Number Systems**

# Non-positional Number Systems

Computer fundamentals Computer fundamentals

- ▼ In early days, human being counted on fingers,. When ten fingers are not adequate, stones, pebbles, or sticks were used to indicate values. This method of counting uses an Non-positional Number Systems.
- ▼ In this system symbols such as I for 1. II for 2, III for 3, IIII for 4 etc.

# Positional Number Systems

Computer fundamentals Computer fundamentals

**Decimal Number System**

**Binary Number System**

**Octal Number System**

**Hexadecimal Number System**

# Positional Number Systems

Computer fundamentals Computer fundamentals

**Decimal Number System**

**Binary Number System**

**Octal Number System**

**Hexadecimal Number System**

# Decimal Number System

Computer fundamentals Computer fundamentals

- The number system that we use in our day to day life is called the Decimal Number System.
- We have ten symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) that can be used in this number system.



**Example:  $1234_{10}$**

# Binary Number System

Computer fundamentals Computer fundamentals

- The binary number system is exactly like the decimal design except that the base is 2 instead of 10.
- We have only two symbols or digits (0 and 1) that can be used in this number system



Example:  $1010_2$

# Octal Number System

Computer fundamentals Computer fundamentals

- In the octal number system the base is 8.
- So in this system there are eight symbols or digits : 0, 1, 2, 3, 4, 5, 6 and 7

**Example :**  $2057_8$

# Hexadecimal Number System

Computer fundamentals Computer fundamentals

- The Hexadecimal Number System is one with a base of 16. The base of 16 suggests choices of 16 single character digits or symbols. Then first 10 digits are the digits of a decimal system 0, 1, 2, 3, 4, 5, 6, 7, 8, ,9. The remaining six digits are denoted by A, B,C, D, E, F representing the decimal values 10, 11, 12, 13, 14, 15 respectively.



**Example :** 69BBA<sub>16</sub>

# Converting One Number System to Another

Computer fundamentals Computer fundamentals

- Converting from a base other than 10 to base other than 10
- Example:
  1.  $545_6=?_4$
  2.  $10110_2=?_8$

# Converting One Number System to Another

Computer fundamentals Computer fundamentals

- Converting from a base other than 10 to base other than 10
- Example:
  1.  $545_6=?_4$
  2.  $10110_2=?_8$

# Converting One Number System to Another

Computer fundamentals Computer fundamentals

- Converting from a base other than 10 to base other than 10
- Example:
  1.  $545_6=?_4$
  2.  $10110_2=?_8$

# Shortcut method for Binary to Octal conversion

Computer fundamentals Computer fundamentals

E.g.  $101110_2 = ?_8$

# Shortcut method for octal to binary conversion

Computer fundamentals Computer fundamentals

Example:  $562_8=?_2$

# Shortcut method for binary to hexadecimal conversion

Computer fundamentals Computer fundamentals

Example:  $11010011_2 = ?_{16}$

# Shortcut method for hexadecimal to binary conversion

Computer fundamentals Computer fundamentals

e.g. 1.  $2AB_{16}=?_2$

2.  $ABC_{16}=?_2$

# Fractional Numbers

Computer fundamentals Computer fundamentals

Q : Find the decimal equivalent of the  
binary number 110.101 and octal number  
127.54 and hexadecimal number 2B.C4

# Fractional Numbers

Computer fundamentals Computer fundamentals

Q : Find the decimal equivalent of the  
binary number 110.101 and octal number  
127.54 and hexadecimal number 2B.C4

# Memory Dump

Computer fundamentals Computer fundamentals

- Every computer stores numbers, letters, and other special characters in binary form. There are several occasions when computer professionals need to know the raw data contained in a computer memory. A commonly used way of doing this is to print out the memory contents on a printer. This printout is called a *memory dump*.

# What is a 'bit' in computer terminology

Computer fundamentals Computer fundamentals

- “*Binary digit*” is often referred to by the common abbreviation bit. Hence, a bit in computer terminology means either a 0 or a 1.
- A binary number consisting of ‘n’ bits is called n-bit number.

# 'bit' in computer terminology

Computer fundamentals Computer fundamentals

- How many different patterns of bits are possible with n-bits?

Examples: 1. 6 bits

2. 7 bits

3. 8 bits